TEXtyl: a line-drawing interface for TEX

John S. Renner

14 March 1987 !

1Copyright ©1987 John S. Renner All rights reserved.

Geometry can produce legible letters,
but art alone makes them beautiful.

Art begins where geometry ends,
and imparts to letters a character
transcending mere measurement.

Paul Standard

1

Contents

1 The Basics

2 Advanced Features

2.1 Transforms
2.2 Figures
2.3 Others
3 User-Level Details
4 When Things Go Wrong
5 Design Details
5.1 Vectors
5.2 Splines
6 The Implementation
6.1 Overview e
6.2 Primitives
6.3 Procedural Handling
6.4 Figures.
6.5 The Fonts
6.5.1 Vector Setting
6.5.2 Beam Setting
6.6 Buffering.
6.7 Odds’mSods

7 Future Extensions

111

10
14

17

23

27
27
30

33
33
34
38
39
42
43
44
45
46

50

A TgXtyl Summary
B Font Example

C Macros and Extended Examples

v

53

57

59

Introduction

TEXtyl is a prototype post-processing system to be used in conjuction with
TEX[9], the typesetting program by Donald Knuth. The purpose of TpXtyl is
to “draw” lines and curves in a device-independent manner. TpXtyl is a post-
processor that interprets certain commands in a DVI (device-independent)
file that is the output of TEX and contains the actual typesetting commands.
TEXtyl will produce as its output another DVI file that contains the com-
mands to typeset the lines and curves on a printer or output device.

In the current version of TgXtyl (version 1.2 of March 1987), the simple
line drawing capabilities include several general types of straight lines, arcs,
and spline curves. Advanced features of TEpXtyl are for MusiCopy, the music-
typesetting project at the Ohio State University[7], namely typesetting ties,
slurs, and beams.

The name for TgXtyl comes from three ideas: (1) a proper computer
graphics term for rendering images is called “tiling,” (2) the mis-pronounci-
ation of the name sounds like “textile,” which evokes an image of lines and
bargello effects from weaving, and (3) this process of “tyl”-ing comes after
TEX.

The main design goals of TpXtyl were (1) the minimization of data re-
quired to typeset graphics on printers capable of setting only characters at
arbitrary positions on a page, (2) the adherence to the DVI format of TEX
output for specifying the way to typeset a document in a device-independent
manner, (3) a simple, portable interface that would not require a change to
the functionality or design of TEX, and (4) a user interface that is easy to
use by people and programs alike.

TEXtyl was not intended to mimic nor replace sexy programs like Ideal[15],
which know about constraints and alignment niceties. Rather, TEXtyl is de-
signed to take care of medium-level details for TEX for use on printing devices

not capable of directly accessing and loading full bitmaps produced by such
systems as PostScript[1]. Tt is clear that DVI-format is a subset of PostScript,
but a large community of users are not able to make use of such a super-set,
and TgXtyl is intended to provide line-drawing capabilities for them.

Probably the best way to read this manual is to read the first four (4)
chapters, and skip right to the chapter entitled Future Fxtensions, for a good
introduction to TgXtyl. The other chapters deal with details of the innards
of TpXtyl, and describe the design in successively finer detail.

I would like to thank John Gourlay, and Clayton Elwell for their support,
comments, reminders, and good ideas during this three-year labor, and the
CGRG for not hassling me about this.

vi

Chapter 1

The Basics

So, let’s draw. I will assume that the reader has a reasonably good working
knowledge of how to use TEX and/or IATEX, and sort of understands Knuth'’s
concept of “boxes,” and their attributes of height, width, and current posi-
tion. We need these concepts because our direct interface is with TEX, in the
form of a .tex text-file. To typeset the line-drawings, we ask TEX to place
our drawing at the current position on the page. Throughout this manual,
I will provide some examples of drawings to illustrate ideas. These figures
are thumb-nail size, but should be sufficient to get the idea across without
using up lots of space on a page. Let’s look at a simple example: After typ-
ing \input{textyl} near the beginning of your file, but after any required
preamble, we can obtain a trivial drawing like:

Simple, but we achieved this line by typing

...a trivial drawing like:\par
\noindent\hskip 2in\begintyl{2cm}[1in]
\special{tyl line 4 20, 0; 80,30}
\endtyl\par

The \begintyl{2cm} [2in] and \endtyl commands were to give us some
space to “paste” the picture in (about 2 centimeters of vertical space, 1 inch

1

of horizontal space, and offset from the left-most margin by 2 inches),! and
the \special... is our way of asking for the above drawn line. Here, we
must use a “\special” to talk to TEX at this level. Later, TpXtyl will
actually do the work involved in typesetting that line that TEX recorded as
being at this place on the page. The \special is a way to make a kind of
note or memo that TEX will write into the DVI file for some other program
like TEXtyl to work with, or choose to ignore, like most DVI filters do.

Let’s look at what \special{tyl line 4 20, 0; 80,30} is all about.
First, tyl is a name-string asserting that this command should make sense
to TEXtyl. Next, line is the name of the graphic primitive to typeset: a
line segment (we will get to the other primitives later). The rest of the
“special” notes that the thickness of the line is 4, and to draw the line from
a mark 20 printer’s-points to the right of the current position to a mark 80
points over and 30 points higher from that current position. Mathematically,
we are using a first-quadrant cartesian coordinate-space whose origin is at
the current position on the page, and we are drawing a line from (20,0) to
(80,30) in integer units of printer’s-points in that space. It looks like this
(magnified):

where we have emphasized the origin of the quadrant, and used tick-marks
for every ten printer’s-points. In reality, someone preparing a figure would
sketch something out on grid paper, and then use those coordinates for use
in the \special. If he were really in luck, he could use a graphic editor
that would take care of such numeric details, and maybe even output the
\special strings for direct insertion into the .tex file. Maybe. For now, we
will have to stick to the grid-paper method. The only things that we have

1See also Appendix C

to remember are that the origin of our quadrant is placed at the position
on the page where we invoke the \special of TEX, and that we may want
to leave white space for our graphic to be drawn in. This last constraint is
because TEX does not really know about the size of our drawing, it thinks
that the \special is a “box” with zero height and width placed at the current
position on the page. It is up to us to decide how much real space to tell
TEX to leave for our drawing to be put into later by TpXtyl.

In the example above, and the following examples, we will put our \special
strings within an environment that makes it easy to specify where the ori-
gin of our quadrant should be placed. For example, \begintyl{4cm}[1in]
tells TEX to place our origin 4 centimeters down from where it was just sit-
ting. A horizontal width is an optional second parameter to \begintyl, and
is enclosed in square braces immediately following the vertical displacement
parameter (with no spaces in-between). So \begintyl{5cm} would place our
origin 5 centimeters below the current position, with no relative horizontal
width. Other spacing requirements have to be done by hand (e.g., like typ-
ing \hskip 1lin before the \begintyl), or by putting the whole \begintyl
... \endtyl group within a containing environment (e.g., IATX’s figure en-
vironment). We could, if we wanted, leave no extra white-space and have
the drawing extend into and over any text that TEX may typeset before or
after we invoke a \special{tyl ...} command. We would, of course, start
that tyling-environment with a \begintyl{Opt} command, and finish with
the \endtyl command, and it might do something like this.

Once we are satisfied with our .tex file containing \special strings re-
questing line-drawings, we run the .tex file through TEX or IATRX, and
(barring any fatal errors) end up with a .dvi file. We now run this .dvi file
through TgXtyl which goes through the file and converts our \special strings
left-over from TEX into commands to actually typeset the line-drawing. The
whole process might look something like this:

prompt:tex

This is TeX, Version mumble...

*kmyfile.tex

. output from TEX

Output written on myfile.dvi (n pages , m bytes).

prompt:textyl

This is TeXtyl, Version blah...

DVI-input File Name:myfile.dvi

DVI-output File Name
(different than input name) [default of myfile.tyl]: myfile2.dvi
. output from TgXtyl

Output written on myfile2.dvi

Log written on myfile2.tlog
So there you have it. All we have to do is give this new .dvi (or .tyl) file to a
favorite DVI filter, and look at the document with the line-drawing results on
that particular filter’s output device (usually paper or a bitmapped screen).
You should contact your local maintainer if TgXtyl or the filter cannot find
the right fonts, and try again.

By the way, the .tlog file is useful for finding out about the “tyling” of
the .dvi file. Besides noting any errors, the log file contains the approximate
height and depth of each non-trivial figure. A portion of the .tlog file for
E]}is Focument might look like:

Figure #1 on page 18 is approx. 33 pts high and 47 pts wide
Figure #2 on page 18 is approx. 32 pts high and 51 pts wide
Figure #3 on page 18 is approx. 27 pts high and 45 pts wide

Figure #4 on page 18 is approx. 31 pts high and 82 pts wide
18] [19] [20] [

This information allows you to re-edit the parameters to \begintyl so
that they can better approximate the actual sizes of the figures.

Let’s try a slightly more complicated example: drawing a spline. TgXtyl
understands drawing smooth spline curves through integer coordinate points
(both positive and negative) on our grid. For example:
\begintyl{3cm}[1in]

\special{tyl spline m 4 K 7 5,10; 9,14; 15,7;22,13;
17,14;12,5;7,0;}
\endtyl\par

yields

Here, we are using units of millimeters for measurement (denoted by an m
or M, a line thickness of 4, and we want to use a Catmull-Rom type spline
(denoted by k or K—also the default type if none is specified). We specify
that there are 7 control points to interpolate through, and then list those x, y
pairs. Some things are optional for you (like the spline type, or the units
of measure), but some are not (notably the line-thickness and the number
of control points). As we go through these examples, I will point out the
minimum that we need to specify a graphic primitive, and note other options
or features that we might want to use. For a detailed look at the specifications
of the primitives, please refer to the User-Level Details in chapter 3.

Let’s try one more type of spline-primitive: the thick-n-thin spline. This
is a primitive that lets us specify a spline of varying line thickness along the
spline. An example invocation might be:

\special{TYL ttspline m 5 4,6; 14,25; 18,19; 21,15; 24,8;
10; 2; 6; 3; 8}

It looks similar to the spline primitive, but here we did not specify a single
line thickness right after the m measure-marker. The 5 refers to the number
of control-points as before, then is followed by the (z,y) coordinate pairs,
and then the line-thicknesses. The first number (here, 10) refers to the
line thickness at the first control-point (here, (4,6)); the next for the second
control-point, etc. We did not need to align the thicknesses under the control-
points, but it makes the correspondence more apparent. We did not specify
the type of spline to use, so the Catmull-Rom interpolating spline was used
by default. We could have inserted a b marker directly before the number
of control-points, and gotten a spline using the B-spline basis. Using a d
marker yields a spline with the Cardinal basis, and an i would indicate an
Interpolating B-spline (which is a little different). We will look closer at these
spline-types on page 14.

If you’ve been very observant, you may have noticed that the way we type
in the \special strings (the letters and numbers within the { — } pair) has
been rather indiscriminant about upper vs. lower-case. That’s okay. TgXtyl
has only a few things to worry about, and so it will try to figure things out for
you. It is pretty lenient about how you punctuate and separate (“delimit”)
keywords and markers.

We only have to remember
1. the relative ordering of the keywords and integers,

2. being careful to avoid mis-using the word markers? in the wrong places,
and

3. supplying enough parameters that are expected.

Other than its own macro-expansions, TEX really doesn’t care about the

“meaning” of the final strings that goes inside the curly braces of the \special{. ..

command-strings, only TpXtyl does.

We'll briefly look at an example of one more graphic primitive, and then
get on to more advanced topics. TgXtyl has the ability to draw arcs and
circles like:

2See the index for a list of markers

Arcs are drawn from an initial angle (measured from the horizontal (positive
x-axis) in integer degrees) counter-clockwise to a final angle with the arc
centered about the origin. If the initial angle is the same as the final angle,
we get a full circle. A simple arc invocation might look like:

\special{tyl arc m 2 3, 48, 280}
which would draw an arc of line thickness 2, a radius of 3 millimeters, from
an initial angle of 48 degrees until the final angle of 280 degrees centered
about the origin. We could specify that the arc is to be centered elsewhere
by using a special @ marker. So,

\special{tyl arcm 2 3, @ 7,7; 10 10 }
would draw an arc of line-thickness 2, radius of 3 mm as before, but centered
at (7, 7) from the origin. Also, since the initial and final angles are the same
in this example (10), we would get a full circle.

Chapter 2

Advanced Features

In the previous chapter, we saw basic examples of most of the graphic primi-
tives available in TEXtyl, how to invoke them, and some of the parameters to
the primitives. We also saw examples of how we interface with TEX using the
\special command strings, and how the origin of our drawing quadrant is
placed at the reference point of the “box” containing the \special (usually
the lower-left corner of the box created with the \begintyl and \endtyl
macros. (see the TEgXbook[9] for a better explaination of “specials”). The
rest of this chapter will look more at the parameters available for the primi-
tives, and how we can combine primitives and manipulate them.

2.1 Transforms

The most interesting additional parameter for the primitives is a transform
operation. It allows us to modify an already-exisiting definition of a primitive
without our having to totally re-edit the \special string, nor having to
explicitly re-compute the coordinates of the line/spline points. Thus we can
take a simple definition similar as before, like:
\special{tyl line m 4 0,8; 39,44}

and change its size, or rotate it, or translate (shift) its position without
completely changing the actual text of the specification of the control points
(this is really useful when dealing with splines having many control points).

Let’s look at an example, and then go into more detail about the trans-
form. For example, to rotate the above definition about its center by 60
degrees counter-clockwise, all we have to specify is \special{tyl line m T
(100, 100, 0, 0, 60) 4 0,8; 39, 44} which yields

as expected. We use the T marker to note the need for a transformation,
and follow it by five numbers. The first two are for scaling, the next two for
translation, and the last (here, 60) is for our rotation. In general, the format
for specifying some transformation on the currently-specified points is:
T <Sx> ’ <Sy> ’ <Tx) ’ <Ty> ’ <R0t> ’

where (Tz) and (Ty) are translations of the object in the X or Y direc-
tion, respectively, by some signed distance according to the current units
of (measure) (m still means millimeters in the above example). (Rot) is a
signed integer angle (in degrees) by which to rotate the primitive counter-
clockwise about its center. (Sz) and (Sy) are integer scale parameters
representing the real values of the transform multiplied by 100. For example,
if you wanted to scale the drawing in the X direction (relative to the draw-
ing’s center) by an additional 50% (i.e., scale by 1.5), (Sz) would be 150.
Negative values are usuable, too, so mirroring about the Y axis is achievable
by scaling in the negative X direction, like (Sz) = —100. To obtain any
transform, all the transform parameters must be specified. A no-op trans-
form would look kind of like T (100, 100, 0, 0, 0) in the middle of the
\special.

2.2 Figures

The last major TgXtyl concept is the idea of combining several primitives
into what we call a “figure.” This figure can be manipulated either as a single
entity or in parts by using the (transform) operations described in the previ-
ous section. These optional figure-level transformations will transform all the
figure’s primitives (which may have local transformations of their own). The
result is a nested symbol definition that has concatenatable transformations.

10

This is useful for defining some symbol, created from various primitives, and
dealing with it as a unit. For example, a basic logotype can be defined, and
then moved about, scaled, or rotated as desired without having to change the
original definition of the logotype or its parts from scratch. These commands
are:

\special{tyl beginfigure [{transform)]}

which opens a level of definition, and

\special{tyl endfigure}
which closes that level of definition. Any calls to a \special{tyl ... prim-
itive within a beginfigure — endfigure pair become part of that figure’s
definition. Note the definition of beginfigure allows the ability to apply a
transformation at the outer level. A simple example might be:
\begintyl{2in}
\special{tyl beginfigure}
\special{tyl line m 2 5,10; 15,15 }
\special{tyl line m 4 10,20; 16,1 }
\special{tyl line m 8 15,10; 25,10 }
\special{tyl endfigure}
\endtyl

giving a figure of three lines:

We can also define sub-figures within figures and apply transformations to
those, too. The idea looks like:

\begintyl{down-distance} [optional-width]

\special{tyl beginfigure}

\special{tyl beginfigure} % Some sub-figure
o % of other primitives
\special{tyl endfigure}

\special{tyl endfigure}

11

\endtyl

Where “...” means possible other invocations of primitives with \special{tyl. ..

strings. We are able to use spacing and tabbing to nicely indent our \special
strings, since TEX considers all that white space to be non-existent within
the \begintyl — \endtyl environment.

We’ll look at a basic figure, and apply some transforms to parts of it. For
the basic figure, we have:

Now let’s scale a sub-figure by using a T transform at the beginfigure level;
i.e., something like \special{tyl beginfigure T 60 60 0 0 0} :

We can rotate, and then also translate that same sub-figure and achieve the
next two examples. First, a rotation about the sub-figure’s center:

and now also translated after the rotation:

12

Finally, we can take the whole figure, and perform a scale and a then a rota-
tion on it (we evaluate scaling first, then rotations and finally translations):

13

2.3 Others

We’ll finish off this section with a couple more primitives: a simple spline
example, and the primitives for a music-typesetting project underway at
Ohio State University[7]. The first example is not really that different from
our first spline example, except that in this case, we have a “closed” spline:
one whose first control-point will coincide with its last control-point. We can
type something that looks like:

\special{tyl spline m 3 b 0 8 (10,9) (4,16) (8,23)
(11,21) (13,17) (20,16) (22,13) (19,8}

The 0 (letter “Oh”) marker denotes a closed spline. The default option is an
“open” spline, and can be marked with a U instead of the 0 if you wish to
be explicit. The difference is in the way that TpXtyl manipulates the control
points when doing the interpolation. In this example, we used a B-spline, as
marked with a b, and we listed only the unique coordinates to get this nice
bean-shape:

TEXtyl provides three types of spline interpolation which I alluded to on
page 6. The Catmull-Rom basis is probably the most intuitively useful spline
for users. It produces a smooth curve that goes through the control points
(which we can mark with dots):

The Cardinal basis is of the same family as the Catmull-Rom. It, too,
interpolates through the control points, and is included for convenience and
as an alternative to the Catmull-Rom. For example:

14

The B-spline is a little different in that the curve approximates the control
points. Using the same control points as the above example, but using the
B-spline basis, we see:

For the most part, you will probably want to draw curves through the
control points that you specify, and so the Catmull-Rom basis is the conve-
nient default. The B-spline type is provided for completeness for users who
might have data using that basis.

There are times when the Catmull-Rom or Cardinal bases give flakey
curves and the B-spline basis is not appropriate either. TgXtyl provides a
fourth type of spline for these situations: an interpolating B-spline curve. It
has the advantages of Catmull-Rom’s interpolation, and the special flexibil-
ities of the B-spline, but is computationally more expensive. See [14] or [3]
for a complete explanation. Here is an example using the same control points
as the above examples, but using the interpolating B-spline:

For the MusiCopy project, we have the ability to draw ties and slurs
—the long arcs connecting groups of notes. For the most part, I assume
that there is a program that is going to take care of the details of knowing
where these graphic elements are to be placed, and will produce the correct
\special string for inclusion in the .tex file, but I will give an example for
completeness.

15

This graceful arc is produced by specifying a minimum and maximum
thickness, and the five control points for the shape.

The call looked like:

\special{tyl tieslur m 2 8 5 (5,10)(7,13);[15,16];(24,17);
28,15 }
where 2 and 8 are the min and max thicknesses at the endpoints and the
middle, respectively. The following 5 is for the number of control points, and
the five pairs of integers following that are the coordinates of the points. We
use a special way of producing a smooth and gradual thin to thick to thin
line-thickness, but will discuss it in a later chapter.

The last example is the most specialized for the music project: beams.
We’ll just look at an example of how they are called and appear, and leave
the details for the next chapter.

The basic order of the parameters looks something like:

\special{tyl beam m 0 g 3,10;11,7 }
where 0 (zero) is the “staff-size,” g indicates a beam size for “grace” notes
(r is the default for “regular” sized notes), and the last two pairs are the
coordinates of the line-segment that the beam is to be centered over.

16

Chapter 3

User-Level Details

From the user’s point of view using TEX, commands that TgXtyl inter-
prets will look like the word “tyl”, followed by the name of the graphic
to typeset, then a list of parameters all enclosed within the curly braces of
a \special{...} command. This use of a \special could be produced by
some other program (a graphic editor, for example), and the text strings
merely inserted into the .tex text-file.

As far as the user is concerned, he is pasting in a picture at the current
position on the page where he invokes the \special. The user should think
of this picture as being a box just big enough to contain all the lines of his
graphic image, and whose first-quadrant cartesian origin is the reference point
that will be placed at the current position on the page. Thus, he might want
to make sure that there is enough blank space around the current position
on the page to contain the image before he tries to “paste it in.” Space
can be created by using TEX’s \hskip or \vskip, or IATzX’s \hspace and
\vspace commands, or hoping for the best with IATX’s figure environment
surrounding the box created by \begintyl and \endtyl.

The kinds of graphic primitives that TpXtyl knows how to typeset are
uniform-thickness line segments, uniform-thickness splines, uniform-thickness
arcs, variable-thickness splines, music beams, and music ties/slurs. Line seg-
ments are merely a subset of splines, and so variable-thickness lines are avail-
able by specifying a spline of just two control points with a thickness at one
end point, and another thickness at the other end point. The feature here is
to have several primitives available, and allow for other graphic elements to
be built using them.

17

We’ll look at the basic syntax for the primitives, and then discuss what
each parameter really means and how to specify what you want. The parame-
ters for each of the graphic types are as follows: literals are in a typewriter
face, any required parameters for the primitive are in (angle) brackets, and
any optional parameters are within | square | brackets. Please note that the
relative ordering of the parameters is important, even if you do not use any
or all optional parameters. Also, it is does not matter if you use upper- or
lower-case letters for the primitives or markers.

\special{tyl line [(measure) | [{transform) s] (thick) s
[(vector) s] [L (style) s | Tiets * Ybottom * Tright * Ytop S
draws a line segment from the point (Zief , Ybottom) tO the point (Zyight » Ytop)
using a line of thickness (thick) .

\special{tyl spline [(measure) s] [(transform) s | (thick) s
[(vector) s | [L (style) s | [(s-type) »] [{closure) 5 |
(X (dotsize) » | (numpts) sx1 > Y1 2 ... > Toumpts > Ynumpts
draws a smooth spline curve through the integer points x1, v,
Tpumpts 5 Ynumpts USing a line of thickness (thick) . If the optional X marker is
specified, dots of diameter (dotsize) are placed to mark the positon of the
control points specified. This may be useful for checking your data.

\special{tyl ttspline [(measure)] [(transform) s]
[(vector) s | [(s-type) s | [{closure) s | [L (style) s]

[X (dotsize) » | (numpts) sx1 > Y15 ... > Toumpts * Ynumpts ?
thicky s ... s thickyumpts }
draws a smooth spline through the integer points z1, v, ... using a line of

varying thickness defined by thick; at each control point (z;, y;) (ergo thick-
thin splines). The X marker is also available for marking the positions of the
specified control points.

18

\special{tyl arc [(measure)] [(transform) s| (thick) s
[(vector) » | [L (style) » | (radius) » [@ (cent,) » (centy) » |
{(angle;) > {angley) }
draws an arc of radius (arc-radius) going counter-clockwise starting from
(angle;) degrees from zero, and finishing at (angles;) degrees around from
zero. If the center point is not specified with the @ marker, the arc is assumed
to be centered at (0, 0). Ellipses can be achieved by a simple scaling of a
closed arc since scaling and rotational transformations are about the center
of the primitive.

\special{tyl label [(measure)s] (face)s x> y>" (string)" }
places a simple label at (z, y) using a font style of (face) (currently selectable
by an integer: e.g., 1 is amtt10. See page 37 for a better list). (String) is
a simple sequence of letters and spaces contained within matching double
quotes ("). Here, the case of the letters of (string) is taken verbatim, and
it is not interpreted; TEX macros or typesetting commands are not usable
here. If you want to typeset fancier labels, TEXtyl is too late in the game.

The optional parameter (measure) is any of S, P, or M denoting that
the integer points, like x1, y1, ... are measured in scaled-points, printer’s-
points, or millimeters respectively. If none is specified, the measurement of
printer’s-points is assumed. Just to refresh how big each of those units is:

e there are 72.27 printer’s points (pp) per inch
e and 65536 scaled-points (sp) per printer’s point
e and 25.4 millimeters (mm) per inch

Also remember that the coordinates for the above control points (like
Tiept OF ;) are in first quadrant cartesian coordinate-space. It is useful not to
have to remember some other coordinate systems, and makes things easier
for the user and user programs to interact with TpXtyl, which takes care of
such details.

19

(Thick) is the pixel-thickness of the vector font to use. Currently the
range is from about 1 to 12 pixels thick (we’ll talk more about these sizes
later). Here are some examples of lines having from 2 to 10 “pixels” in even
thicknesses.

(Vector) refers to the type of vector to use, namely C for vectors that
look as if they are drawn with a circular “pen,” H for a horizontal pen, and
V for vertical pen appearance. A circular pen vector-type is the default. See
also section 5.1 for examples and a better description.

(Style) is the line-style to use when drawing. Currently, TgXtyl is able to
provide solid (style 0), dotted (style 1), dashed (2), and dot-dashed (3) line-
styles. The solid line-style is the default. Here are some simple examples of
the styles:

(S-type) is the kind of spline-basis to use when interpolating the spline
through the control points. Currently, B indicates the b-spline basis (which
interpolates a spline within the convex hull of the control points), I indi-
cates an interpolating B-spline (goes through the points specified), D for the
Cardinal basis, and K which indicates the Catmull-Rom basis (which also
interpolates a spline through the control points). The Catmull basis is the
default spline type in the current implementation.

(Closure) is used to indicate whether the spline is a closed curve (the
endpoints overlap), or an open curve (the default). We use the iconography
of O for a closed curve, and U for an open-ended curve.

20

Now we come to describe what (transform) is all about. TpXtyl allows
the user to modify the coordinates of the control points without having to re-
calculate their new positions by himself. I tried to make the specification and
modification of TgXtyl’s primitives as painless and intuitive as possible. We
usually think more in terms of connecting dots and placing graphic elements,
and not in terms of slopes, tangents and velocites which are messy at best,
and get more cumbersome from there.

Geometric transforms like scaling (independently in the X and Y direc-
tions), rotating about the “center” of the graphic object (a primitive or a
figure), and translating in the X and Y directions are available for most
of the primitives. The format for specifying some transformation on the
currently-specified points is:

T» <Sx> ’ <Sy> ’ (Tx> ’ <Ty> ’ <R0t> ’

where (Tz) and (Ty) are translations of the object in the X and Y direction
by some signed distance according to the current units of (measure). (Rot)
is a signed integer angle (in degrees) by which to rotate the primitive or
figure counter-clockwise about its center. (Sz) and (Sy) are integer scale
parameters representing the floating-point values of the transform multiplied
by 100 and truncated. To obtain any transform, all the transform parameters
must be specified.

Two other special types of graphics capabilities are meant to be utilized
by a knowledgeable program, such as the music-typesetting system being
written at the Ohio State University. These are:

\special{tyl tieslur [(measure) s] (minthick) s (maxthick) s
(numpts) sT1 > Y1 5 . > Toumpts > Ynumpts S
which draws a smooth spline curve through the points (z;, v;), and uses a
built-in algorithm to figure out the correct thicknesses of the tie/slur between
(minthick) and (maxthick). These control points are also in first quadrant
cartesian coordinates, and a circular-pen vector-type is used to draw the
spline.

\special{tyl beam [(measure) | (staffsize) > [(beamtype) 5]
Ty Y1 s Ty o Yo}
draws a music beam from (x1, y1) to (z2, y2) (also in first quadrant space)
using a beam of (beamtype) G for a grace-note sized beam, or R (the default)
for reqular sized beams in the specified staff-size. For a description of staff
sizes, see [12].

21

Finally, there are two more \specials that TgXtyl can understand. These
are used to group any of the above graphic primitives together into a “sym-
bol.” The commands are:

\special{tyl beginfigure [(measure)]| [(transform) s]
(W (width) > (height)] [F (width) > (height)] }
which opens a level of definition, and

\special{tyl endfigure}
which closes that level of definition. These are analagous to push and pop
kinds of operations, with many levels of recursive definition available. The
optional F marker specifies the final optimal width and height of the figure,
in terms of units of (measure) . This is useful for fitting a figure to a specific
size, so that you do not have to compute the scaling parameters by yourself.
This ability is often desireable if the figure was created by some program that
output the figure at a different scaling factor than you require on the page.
The W marker indicates the width and height of the figure at the size that it
was originally written, which we assume the figure-making program output
along with the definition of the figure elements. For most practical purposes,
you can let TpXtyl compute the size of the figure as it was originally created,
and then let it fit the figure to the sizes requested by the F marker.

Besides the implicit transform parameters created by using the F and /or
W markers, an explicit figure-level tranformations can be specified using the
(transform) capability using units of (measure) (or the default units of
printer’s points). Also, any transforms applied at a level of definition are
additive over the lower-level definitions and any transformations that they
may have locally.

22

Chapter 4

When Things Go Wrong

Despite the best of examples and directions about careful typing of \special
strings, there are times when TpXtyl will get upset and complain about some
situation or input. Fortunately, TEXtyl can continue from most of them (like
missing or incorrect parameters), and just report them in the .tlog log-file
for you. An example run of TgXtyl might look like:

>textyl
This is TeXtyl, version ...

DVI-input File Name: myfile.dvi

DVI-output File Name
(different than input name) [default of myfile.tyl]

(1] [72]
Output written on myfile.tyl
Log written on myfile.tlog
Some error(s) occurred. Please check Logfile for details.
Assume that the outputfile is incorrect

Rather than annoy you at the terminal with long error messages, TpXtyl
puts a 7 mark to indicate that some error happened. Since it wrote the .tyl
output file, TEXtyl must have recovered well enough to finish its job, but the
output probably does not look right. The .tlog file might look like

23

This is TeXtyl, Version blah...
Reading File: myfile.dvi
(1 [
Error in fig# 1 on page 2
Arc Thickness not found. Setting to 1
2]
Output written on myfile.tyl
Log written on myfile.tlog

which was just a missing parameter to the \special{tyl arc ...} string.
You will have to re-edit the file and insert the correct thickness. All the error
messages that are written to the .tlog file try to pin down the error to the
figure number on the error-containing page. These references to the position
of the error come from the n' figure on the page (the n count is relative to
each page, and starts from 1), and the page number is from TEX’s \count0
register that enumerates pages. Sometimes TEXtyl cannot always determine
the exact figure on the page (e.g., if we forget to close a figure definition with
an endfigure), and so estimates at least the bad page in question. For the
most part, the error is a just missing parameter, or a bad parameter to a
\special string being read by TgXtyl.

However, there are a larger number of errors that TgXtyl found “surpris-
ing” and so marks these errors on your screen as 7! . Most of these internal
errors are based on the functionality of DVItype concerning TFM informa-
tion, and the structure and commands of the DVI file being read. TgXtyl,
like DVItype, will complain, and possibly roll over and die gracefully.

24

The other “surprising” errors that TpXtyl might complain about are really
internal to TpXtyl, and constitute a bug, or just a compile-time constant that
is too small. These easily-fixed surprises are

e too many dvistrings. This page required more DVI bytes than usual.
Have your local maintainer increase the size of the internal buffer used
for storing a page’s DVI bytes.

e too many spline segments required. The spline you tried to set
might be too large/long for the space allocated for a spline’s descrip-
tion. That size is also a compile-time constant. TgpXtyl will reduce the
number of control points that it interpolates so that you can at least
get the output, and so that it does not die ungracefully.

e figure definition not closed at end of page. You forgot a
\special{tyl endfigure} command in some figure definition on the
page. TpXtyl will not typeset that figure, and will go on to the next

page.

25

There are also some down-deep errors that could potentially (although
doubtfully) show up. These are probably some error in the vector fonts being

referenced by TEXtyl.

e min radius of vector font is zero. The referenced vector font’s
TFM information reported that the font’s radius size is smaller than
it was designed to be. TgXtyl will make a temporary fix so that it
can continue, but the output figure will be wrong. Have the local
maintainer re-check the vector fonts.

e bad dydx. This is a rare problem. Somewhere, the code to typeset
a diagonal line segment referenced an impossible dy/dx combination,
and cannot find any vector character to fit. TpXtyl will continue, but
you may see a tiny glitch in your figure.

e dx is too big/small, dy is too big/small. This is a problem. For
some reason, a distance was referenced that is out of the range of the
32-bit representation of integers. This really should never happen.

For the most part, TgXtyl can recover from errors that it encounters, and
give a brief summary in the .tlog file. Other errors have to do with TFM
file information, and are outside the scope of TgXtyl to handle gracefully.
The most serious “surprise” errors are bugs, and you should report them
directly to me with a copy of the .tex file, or at least a detailed printout
from DVItype of the .dvi file processed by TpXtyl.

26

Chapter 5

Design Details

The top-level of TEXtyl is taken directly from the DVItype[5] program, with
a few modifications. Most of the diagnostic functionality of DVItype is main-
tained, but without the user interface (TgXtyl assumes it is supposed to
process all the pages). A “hook” was inserted into the program to handle
the TEX \specials that TgXtyl understands (hereafter, “special” will refer
only to those commands that TgXtyl understands—other \specials are ig-
nored, and simply output to the DVI file without modification). The DVItype
code was used mostly for its keeping track of the current DVI h and v position
coordinates on a page, and handling TFM information.

Basically, as TEXtyl slurps in a DVI file, it processes “normal” commands
in a normal way (i.e., just keeping track of positions and counters). When it
reads a \special string, it tries to interpret the parameters and expand the
special, producing commands to typeset the graphic using characters from
special fonts.

The result is a transformed DVI file that now contains “normal” (i.e.,
non-special, ‘put-that-character-there’) dvi-commands as far as TgXtyl can
tell, after taking care of new font definitions and doing any bookkeeping of
counters and internal references.

5.1 Vectors

Several design decisions were made to give TEXtyl the ability to typeset the
graphics of the complexity that we desire. This ability is intrinsically bound

27

to the fonts to be used, and the way that we use them. For this project, I had
to create a font of short, oriented line segments. This was to minimize the
amount of information required to typeset a curve. One could address each
pixel of the virtual device to draw the graphic (putting hundreds of periods
from a font), but that is not device-independent, and the amount of data
is huge in comparison to using line segments. These line segments can be
connected together rather smoothly to give the appearance of a continuous
line segment or curve.

Using this scheme, described by Nelson and Saxe at Carnegie-Mellon
University[11], T am able to typeset the correct character corresponding to
the desired length and angle. I modified their font those angles cover the first
and fourth cartesian quadrant system, and whose vectors are from the origin
to points clockwise along the perimeters of semisquares of decreasing radii.
They use this scheme in order to use the longest vectors possible for a given
distance (thus minimizing the number of characters to typeset), and also
have shorter vectors for use in tightly curving lines. They use a semisquare
(rather than a semicircle) for a quick line-tangent intersection test in their
algorithm to decide the maximum length vector to use that has a satisfactory
variance from the tangent to the line. I really must give correct thanks to
Dario Giuse at C-MU][6] for first implementing the vector-font typesetting
code that I subsequently modified for TgXtyl.

I modified the vector font for use with Metafont 79[10], and was able to
describe it in a device-independent manner. Because of the limitations of
Metafont 79’s and TEX’s representation of character heights and depths, 1
could not accurately describe the character dimensions in such a way that I
could leave the low-level typesetting details to TEX through its idea of TFM
information. Thus, TEXtyl has to take care of the details of calculating the
correct dimensions for each character of each vector font. This calculation is
done, however, only as a particular font is first required, and the dimensions
are computed on-the-fly using the group of parameters found in the TFM file
that we have defined for our own use. After this initial parameter calcula-
tion, subsequent references to that font’s TFM information is accessible via
a caching scheme. The fonts contain such information as the measure of the
maximum-length vector of the font, and the height and width of the pen used
to draw the font (all in scaled points).

Current plans for the vector fonts are for sizes in the range from about
1 to 12 “pixels” for each of the three types of Metafont pens (circular, flat

28

horizontal, and flat vertical). The fonts are actually device-independent in
size, as our “pixel” is measured in absolute units of 16384 (2'*) scaled-points.
However, there is a step within Metafont 79 that insures that the vector size
is an odd-number of physical pixels computed at the final output-resolution.
This is to avoid some discretization errors and the accompanying aliasing
artifacts. I expect the vectors drawn with circular pens (the “cvec” fonts)
to be the most utilized. Their endpoints are rounded and are positioned
to coincide so that the segments overlap slightly and meet up gracefully
producing a smoother curve. Here are some examples of circular, horizontal,
and vertical pens that can be used for different effects:

Beams

A similar scheme is used for the beam characters found within the music
fonts. The beam characters are in two types (those for grace notes, and those
for regular notes) for the staff sizes of music (numbered 0 down to 8). See
also [12]. The font is also a set of short line-segments that will be connected
to create a beam (some other program will have to know about the details of
describing how to attach stems from the beams down to the notes). However,
the beam characters are different from the vector fonts in that each staff size
of music has one particular size of beam characters associated with it.

The beams are designed to appear as if they are drawn with a flat-edged
pen held perpendicular to a ruler (at all orientations). When a vertical
pen is drawn along a path, the actual cross sectional distance of the line
segment decreases with the angle (i.e., it is thickest when drawn along a line
at zero degrees from the horizontal, and thinnest as it is drawn along a line
approaching +90 degrees). The way to maintain the appearance of consistent
thickness of the line segments at all drawn angles is to actually increase the
“height” of the vertical pen as a function of the angle from the horizontal.
This function was geometrically derived to be the secant of the angle, which
yielded in a scaling factor to apply to the original definition of the vertical

29

pen’s height.

Another difference from the vector fonts is that the beam characters do
not have to cover as large a angular range. The angles from the horizontal are
less than 45 degrees on the average, and the lengths of the beam characters
are no smaller than the width of a quarter note for that staff size. The
current implementation defines the beam characters in four groups per staff
size: regular beams in lengths of 1.0 and 1.5 quarter-note-lengths, and grace-
note beams in lengths of 0.5 and 0.66 grace-note-lengths.

The scheme of typesetting is similar to that of the vectors, but an added
constraint is resolved. Since the beam characters use a slightly smaller set of
fixed angles from the horizontal, we have to choose the best beam character
to use such that we use the maximum length beam character and try to
obtain the least deviation from the angle requested to fit the beam font. The
dimensions of these beam characters are computed only as each music font is
required, and a caching scheme is maintained to avoid unnecessary re-loading
of font information and subsequent definition in the DVI file.

5.2 Splines

A second decision that I made for the current implementation of this system
was to use Catmull-Rom[4] splines as the default instead of B-splines. The
reasons for this are two-fold: (1) Catmull-Rom splines are of the same fam-
ily as B-splines, but are guaranteed to produce a smooth curve through the
control points, whereas B-splines only approximate within the convex-hull
described by the control points. Therefore, Catmull-Rom splines are a true
interpolant; and (2) when dealing with the ties and slurs, the user wants
the curve to go through the five points that he specifies (left, middle and
right points). With B-splines, he would have to estimate the position of the
middle control points in order to get the curve to be in the correct position.
Catmull-Rom and Cardinal splines are just as easy to calculate, and usually
achieve the effects that we need.

I have also experimented with operations on the B-splines to achieve
true interpolation. This method was described by Barsky and Greenberg|3]
describing how to re-compute B-spline control-points so that the resulting
spline would interpolate through desired points (inverse interpolation). It
actually does not require very hairy mathematics. Arcs and circles are im-

30

plemented using this spline primitive. The arc control-points are computed
(or pre-computed in the case of circles, and ellipses which are just scaled
circles) and then are used in the inversion procedure so that the resulting
B-spline passes smoothly through those original points. We will later de-
scribe further this usefulness of implementing various graphic objects using
lower-level primitives.

I also use the Catmull-Rom interpolation when computing the differ-
ent thicknesses along both the tie/slurs and the variable-thickness splines
(“ttsplines”). I need to interpolate from the current control-point’s thick-
ness along the curve to the next control-point’s thickness, and can do this
smoothly by using the interpolation methods available when computing the
splines anyway.

Since we have the ability to draw splines of varying thickness, we can
easily implement ties and slurs (those long arcs connecting groups of notes
on a musical score), since they are splines of usually five control points,
having the specified minthick thickness at the left and right, and mazthick
thickness in the middle.

31

32

Chapter 6

The Implementation

6.1 Overview

TEXtyl is currently nearly 9000 lines of Pascal code (not WEB). It is a proto-
type, and not a product. Testing was simplified by the ability to pre-view the
contents of the DVI file on Sun workstations using the DVISUN [8] program.
It was written using Berkeley Unix! Pascal, but is not dependent on that
operating system except for differences in I/O. There are also differences in
efficiency/ease of reading from files—reads versus gets. I/O routines for
both byte types (signed and unsigned) are written and available, and have
been set up for easy porting to other machines.

The idea for handling DVI files is to read each byte into a buffer until we
read an eop (end-of-page marker), when we will write that buffer out into a
file, and start a fresh buffer with the next page. If we encounter a \special
in our reading, we treat it as a macro-expansion—substituting our byte-
string for the byte-string that represented the invoked special, and put this
“tyled” string into the buffer for subsequent output. A nice feature of this
slurping is the parser for the specials. It is simple and extensible enough
to easily accommodate new TgXtyl primitives, and different or additional
parameters.

Besides being careful about the expansion of the \special string, TEXtyl
has to keep track of any newly-defined fonts for insertion into the postamble
in the DVI file, and do some bookkeeping for bop backpointers, and file byte-

1Unix is a trademark of Bell Laboratories

33

length.
Most of this chapter discusses the algorithms and data-structures of TpXtyl
at various levels. We'll start with the high-level and user concepts, and work

our way down into the details of outputting the actual bytes into the .dvi
file.

6.2 Primitives

The user’s interface to TgXtyl is through .tex text files. He types in the
\special strings for TEX, and fills in the name of the primitive to typeset
and any parameters to modify the attributes of the primitive. This .tex file
is converted by TEX into a .dvi file which is then given to TgXtyl. For the
most part, all of the graphic primitives in TgXtyl have common attributes of

e bounding-box,

e line thickness,

e pen-type (see section 5.1),
e line style

that describe basic appearances of an item. A “bounding-box” describes the
minimum and maximum X and Y values of a minimum-sized orthogonal
rectangle that encloses the primitive. I'll describe the primitives and point
out their additional or modified attributes to those above. My plan was to
provide a number of primitives that were conceptually built upon lower-level
primitives, and share similar representations wherever possible. For example,
a tieslur is clearly built upon the representation of a spline primitive. With
this concept, I was able to represent the following primitives and effectively
“draw” them by reducing to easier primitives, down to the vector-font level.

34

Line

The most basic primitive is the line, as all other non-figure primitives
reduce to the same routines that produce line-segments. A line has attributes
of bottom-left and upper-right endpoints, and is drawn from left to right in
DVI-space, which is similar to fourth-quadrant cartesian space, but y-values
are positive-increasing going down the y-axis. In section 6.5.1 I will describe
how the line is “drawn” on the virtual page using the vector-font characters.

Spline
The spline primitives (spline and ttspline) have the attributes of a
line, and in addition:

e spline type (see section 5.2),
e openness,
e a count, and a list of control-points.

The spline primitives all use the same basic algorithm for interpolation of its
control-points (“knots”) using one of three spline bases: the B-spline basis,
the Cardinal basis, and the Catmull-Rom basis. The difference is mainly in
the choice of basis matrix.

Ttsplines have an additional attribute that describes the thickness of
the spline at each control point. TgXtyl uses the same method of spline
interpolation for computing the varying thicknesses over the length of the
spline as for computing the position of the line-segment positions over the
spline.

Ties

A tieslur is just a subset of ttsplines. It has exactly 5 control-points,
which is sufficient to describe even the longest slur. It needs two specified
line thicknesses: (1) a minimum thickness value at the far end points, and
(2) a maximum thickness in the middle of the slur. TgXtyl uses an internal
algorithm to figure the other thicknesses of the control points. This then
reduces to a ttspline of five control points for interpolation. The only other
difference from a ttspline is in the “clamping” mechanism. Let me explain:
optimally, we would like the smoothest possible transitions of line thicknesses
along a varying thickness spline, but this is still subject to the aliasing arti-
facts (“stair-steps”, “jaggies”) of the printing device’s resolution (you can’t

35

have 3.3 pixels in black and white). We could have a vector font for every
possible pixel-size of the printer, and thus be able to achieve as smooth a line
as the printer is capable. This could easily require the printer to use dozens
of different fonts per page (imagine a page of math, text, and a complex
figure) which most printers’ limited font memories cannot handle

We are faced with either not being able to print the page (sort of defeating
the whole purpose), or to reduce the number of fonts required to set that
particular figure. This reduction is called “clamping.” We make sure that a
requested vector size is in a pre-selected set of fonts, and then modify that
size if it is not in that set. Usually this involves just adding/subtracting a
vector-pixel unit and iterating again through the test-modify loop until the
size fits.

Ties and slurs use the same basic clamping mechanism as ttsplines
(described above), but also have a built-in way to select and compute the
thicknesses along the length of the spline. This means that TpXtyl decides
the thicknesses for the tie/slur using its own algorithm based on the user
specifying the maximum and minimum thicknesses.

Arcs

Arcs are described in terms of a radius, an initial and final angle, and
an optional center coordinate. Internally, this is transformed into a uniform-
thickness spline. Closed circles are a special case of arcs, and so we can
pre-compute the control points of the closed spline to describe the circle, and
then just scale to fit the desired radius and translate its center to the required
coordinate. Ellipses, although not a named primitive, can be simulated
effectively by specifying a closed arc (a.k.a circle) and transform it by scaling
as desired in either X and/or Y, since circles are a special case of ellipses.

Open arcs are represented by an open spline whose control points were
computed by sampling along the length of the arc. We do this sampling in
16 places using the parametric representation of the arc:

xr=rcost, y=rsind for oy <60 < ay

and 6 is a multiple of 11—6(0z2 — ay). After we obtain these control points, we
can interpolate over the knots and obtain the spline segments.

In reality, we have to treat arcs with a little more special care than simple
splines. In computing open splines, we have to do some tricks with the list
of control points. We introduce “phantom” control points which help the

36

endpoints look nicer. See [14] for a better explanation of phantoms. The
problem with arcs is that the endpoints would look too “flat” if we used the
normal phantom-ing method. What I do is to create two extra control points
(one before the start of the actual arc, and one after) so that we preserve
roundness by continuing around the arc with the same parameters to the
representation. Then I lie to TEXtyl ’s innards, saying, “these extra points
are not really part of the arc to typeset. They are the phantoms, so don’t
compute any for us.” After that, everything else works pretty much the same
as regular open-splines in “tyl”-ing. It should be apparent that splines are
the largest class of primitive types that TpXtyl deals with, since they are
capable of simulating/representing most graphical objects that we ususally
work with.

Beams

The last basic primitive that TpXtyl offers is the beam. Beams are graph-
ically equivalent to straight line-segments. The only difference is that they
have a different font that they use. This font and the particular characters
from it are determined by the beam’s two attributes: staffsize and beam-type.
Staff size refers to the spacing of the staff lines of a music score, which also
determines the size of the music symbols to use. It is analagous to defining
the point size of a character given the interline spacing measure. See [12] for
examples of each size, also the discussion of the beam characters on page 29.
The beam-type attribute refers to the size of notes that the beam connects:
regular or grace notes. More will be said about beams in section 6.5.2.

Labels

Labels are not really considered primitives, but are included here for
convenience and completeness. They have no correspondence with any of
the other graphic-primitives described above, but may be included in figure
definitions. Labels have the attributes of starting position, font-style, and
the string-body of the label. They are not transformable at the local level
(but are affected by figure-level transforms), and are basically pretty simple
in nature. TEX macros are not expanded within the string-body by TgXtyl;
you should use TEX do to any smarter label-typesetting.

Currently, the built-in list of fonts selectable for use in placing labels is:

e amtt10 (selectable by specifying face 1)

e ambl10 (face 2)

37

e amsll0 (3)
o amtts (4)
e and amsl8 (5)

The characters from these fonts are simply set, as TgXtyl does not worry
about kerning or ligatures, and spacing is done with information found in the
parameter section of the .tfm file. This font mapping list is only temporary,
and can be changed within the TgXtyl source program.

6.3 Procedural Handling

After TpXtyl picks apart the \special strings from the DVI file, and deter-
mines the parameters (both specified and defaulted) for the specified prim-
itive, TpXtyl makes a note about where in the file the start of the special
occurs, and passes the data to a handler. A handler is a procedure that is
specific to each primitive (e.g., there is a 1inehandle, and a ttsplinehandle
procedure) that knows about the internal representation of each primitive,
and how to “handle” the data passed to it. We’ll talk more about the internal
representation in the next section.

The handlers’ primary responsibility is to take care of primitive-level ge-
ometric transformations, and then to decide what to do with the data, de-
pending on the context of the primitive being dealt with. This context is
determined by whether the primitive is contained in a figure, or is by itself.
If the primitive is not contained in a figure (i.e., the \special string was not
within a beginfigure — endfigure pair), the handler

1. computes the bounding box for the primitive,

2. transforms the coordinates of the primitive into DVI-space,

3. offsets them by the current position on the page,

4. outputs a DVI push command,

5. calls an appropriate procedure to actually typeset the primitive,

6. and finishes with a pop command.

38

We need to transform coordinates from our first-quadrant cartesian space
into DVI-space because the lower-level procedures that actually typeset and
output the vector characters assume that they are putting the characters
onto a page of the DVI file.

If the primitive’s definition is part of an enclosing figure definition, we
delay output of this primitive until the figure is completely defined. The
handler does any simple geometric transformations required, and then simply
packs the data into another structure, and sort of “stacks” this new structure
(let’s call it an item) onto a list of items that are contained in this figure.
Our reference to “figure” here could also be a sub-figure within an enclosing
figure, but for now we’ll just deal with primitives in terms of simple, one-level
figures. When the figure definition is complete, the figurehandle procedure
is called. We will get into figures more in the next section, but for now, we’ll
say that this handler

1. computes the bounding box of all the sub-items of this figure, taking
care of necessary transformations,

2. outputs a push command,
3. unpacks each sub-item, and transforms its coordinates into DVI-space,

4. calls the item’s particular primitive handler with a special flag that
says to simply call the appropriate procedure for immediate typesetting
without doing any further transforms,

5. and finishes with outputting a pop command to the DVI file.

The design of these handlers was to maintain the idea of “information-hiding”
such that each handler (primitive- or figure-level) would know only about one
level of abstraction below it.

6.4 Figures

Let’s look more closely at what we called “items” in the previous section,
and how we really represent figures. Up to this point, I have been rather
ambiguous when referring to “primitives.” In some cases, it meant graphic-
primitives (like lines and splines); in other cases it meant the things that

39

we can make pictures with (like figures, sub-figures, and graphic-primitives).
Well, now the ambiguity gets worse. I'll try to be careful about distinguishing
“oraphic-primitives” when I mean primitives that are reducible to vector
characters, and use “primitives” when I mean graphic-primitives and figures.
The reason for the difference is that since we have the ability to do recursive
sub-figure definitions, a “figure” (as denoted by a beginfigure—endfigure
pair) becomes a building block (just like graphic-primitives) for that enclosing
figure’s definition. It is analagous to the programming language concept of
(block) , where (in BNF notation)

<figure> ::= <primitive> / <primlist>

<primlist> ::= <beginfigure> <primlist> <endfigure> /

<primitive> <primlist> / <empty>

where (primitive) is what we previously referred to as an “item,” (beginfigure)
is denoted by \special{tyl beginfigure}, and (endfigure) is denoted by
\special{tyl endfigure}. Refer back to page 11 for an example of sub-
figures.

Items
The “item” data structure contains the attributes for graphic-primitives,
as outlined in section 6.2, and also contains attributes for a figure like:

e any figure-level transformation parameters,
e a “name,”
e and the list of items contained in this figure.

As you may surmise, this can yield a linked-list of linked-lists when built
to represent a complex nested figure. In our previous discussion of han-
dlers, one mode of their operation was to “pack and stack” the data into
an item. Packing is easy enough to understand, but putting this structure
in the correct place is tricky. When an item is created and filled with the
appropriate parameters in a graphic-primitive’s handler, there is a notion of
“context” which refers to the depth of recursion of sub-figures. A depth of
0 means that there is no higher-level figure, a depth of 1 means that any
primitives encountered will belong to an outermost level figure, etc. When
TEXtyl comes across a beginfigure special string, it changes the recursive-
definition context, and names that figure with that depth number. After that,

40

any graphic-primitives that are encountered belong to that named figure in
that context. An endfigure special will decrement the depth of recursion,
and thus will change context back to the previous context. If this new con-
text has a depth of 0, then we know we have closed the outermost level of
figure definition, and thus we are ready to typeset the entire figure.

Let’s look at how items are inserted onto our data structure so that
context is maintained. TgXtyl uses a procedure called pushItem that takes
an item and puts it on the correct list (or sub-list) according to the current
figure context. Roughly, the algorithm is a simple insert, based on a key of
depth-name.

Start from the front of the list of this figure
while the list is not empty
Look at the item
if it is a figure of the current context
then we are done searching. do an insert
otherwise there must be a sub-figure lower on the list
look for the next item on the list that is a figure
and start the next search from its list

I really simplified the explanation of the insertion scheme here, but the impor-
tant idea is that of looking for the correctly labelled figure-list and inserting
the item there.

Once the structure is built, and 7TgXtyl determines that it is ready to
typeset the entire figure, it traverses the structure to compute and note the
bounding boxes of the sub-figures (and their bounding boxes, too). We need
to do this in case there are any figure-level scaling or rotations of graphic-
primitives which are performed relative to the center of the bounding box of
the primitives contained in the figure. As we traverse the sub-figures, we do
any required sub-figure transforms, record the dimensions of the bounding
box, and pop up a level. When our traversal has reached the top level,
all the figure’s primitives have been transformed according to the recursive
definition’s specifications (i.e., the transforms are additive as we descend in
recursive depth). If there are any top-level transforms to be taken care of,
we revisit the lists of primitives, performing the transforms. Finally, at this
point we are ready to re-traverse the structure, grab each graphic-primitive,
unpack it, transform it into DVI-space, and give control to its handler for
immediate typesetting.

41

If you really want to get picky, the contents of a figure are not typeset
and output until the last balancing endfigure is encountered. It is at the
current position on the page where this endfigure is set that the origin of
our figure is placed. We can get away with this condition because specials
are viewed by TEX as “boxes” of zero width, and so a consecutive series of
\specials do not change the current position on the page relative to the first
invocation of the list. If, however, the user types in normal TEX-typesettable
text in the middle of a list of \specials defining a figure, the current position
will move, and our figure will be shifted down to the position where the final
endfigure is invoked. This might make him unhappy. My advice is to think
of the figure/picture as an atomic entity, whose contents is strictly a list of
\special strings defining that figure.

6.5 The Fonts

The whole basis of this program lies in the ability to typeset graphics with
characters. Thus we have two families of fonts: the vector fonts (originally
designed at C-MUJ[11] by Bruce Lucas), and the beam fonts (part of the
music fonts for the MusiCopy project).

TEXtyl converts the requests for line-drawings into commands to typeset
these characters of line segments. See Appendix B for examples of these
characters. Since Metafont 79 limits the TFM information to 16 heights and
depths, we have to do the computations of the character dimensions ourselves.
This is easy to do as TgXtyl has the correct dimensions for each character
described in Pascal code in such a way that only a couple parameters from
the .tfm file need to be accessed in order for the code to define the exact
(internal) dimensions for a font. In essence, the basic description of the vector
and beam fonts are hard-coded in TgXtyl, in a manner independent of the
actual size of the pens used to draw them. This “on-the-fly” font calculation
is done only as needed, and then the font information is cached and noted
so that future requests for that font will not require us to re-compute these
dimensions.

Within the modified DVI file, TEX?yl defines these new fonts and begins
numbering from 300, as a sort of “signature.” So if you look at this new DVI
file with DVItype, you can tell the parts that are typeset figures by noting
the places in the listing that reference a font numbered above 300.

42

6.5.1 Vector Setting

The vector fonts themselves, as described in section 5.1, are typeset using
the method described by Nelson[11], and T'll describe how TgpXtyl does it.
In section 6.3, we made mention that a graphic-primitive’s handler call an
“appropriate procedure to actually typeset the primitive.” This typesetting
procedure is actually the “hook” for a programmer to get right to the typeset-
ting code. The procedures look like Tylx, where z is a graphic primitive (e.g.,
TylSpline, TylArc, etc.), and take as parameters the information equivalent
to the unpacked representation of an item. The coordinates of any points
used are in DVI-space, and in units of scaled-points. Refer to the code for the
formal parameter list of each Tylz procedure. These hooks call procedures
to “lay” line-segments on the page, after doing some work of clamping, and
opening the correct font files for the requested line-thickness (thicknesses in
the case of ttsplines). These procedures, in turn, call layline, a procedure
that determines the best way to typeset the line-segment. Layline checks
to see if the line is strictly horizonal or vertical so that it can reduce the line
to typsetting a TEX rule, and then just add endpoints for smooth overlap.
However, if the line is more diagonal, we have to go through more work.
Diagonal lines, and certain cases where we think using TEX rules inap-
propriate, require potentially using the full set of vector characters. The
diagonal procedure intersects the line-segment with the origin of the semi-
square of the vector font (see also page 28). In essence, it implements a
greedy method by scaling down the radius of the semi-square to find the
longest possible radius of the vector characters such that the far point of the
line-segment lies just outside that radius.
Then diagonal determines the dy and dx from the current position to that
intersection point on the line.? We use the mapping function similar to [11]
to determine character code corresponding to these dy and dx values:

code = 160 + dy + dr — 9 * max (dz, —dy) for dy <0, de >0
code = 160 + dy — dz — 7 * max (dz, dy) fordy >0, de >0

but this scheme assumes that our font has at least 160 characters (i.e., 256),
but most fonts have only 128 characters. We have to re-map this discontin-
uous set of codes to fit with a range of 0...127, and in doing so, we have to

2Thus dz and abs(dy) are integer powers of 2 between 0 and 16 inclusive.

43

lie about two of the characters by pretending that the two longest vertical
vectors do not exist, but each is to be replaced by two vectors of half that
length.

Once we have determined the vector character, all we have to do is move
to the current-position, set the character, increment our position, and finish
setting the rest of this line-segment. The thickness of the vector theoretically
does not matter, as the path followed by the vector character is invariant over
the thickness (at least to the resolution of the printer).

6.5.2 Beam Setting

The way that TgXtyl typesets beam is similar to typesetting line-segments.
The TylBeam procedure takes care of determining the correct beam character
to use. Recall from section 5.1 that there are two lengths for each type
of quarternote (i.e., regular notes and grace notes). When TgXtyl tries to
typeset the beam, it uses the beam character whose length is longest and
whose angle is closest to that required.

Given a music font of beam characters with their lengths, heights, depths,
and angles from horizontal computed, we try to set the whole beam at once
by the following method:

1. Compute the dy and dx of the beam, as well as its length and actual
angle from horizontal

2. compute the fractional number of characters needed to typset the beam
lengthbeam

for both sizes of beam characters (this is |
ngthbeamchar
3. try to bracket a pair of beam characters whose angles are nearest the

actual angle of the beam

4. use the beam character that has the smallest angular deviation from
that of the actual beam

5. typeset the characters along the line from the left endpoint of the beam
to as close to the right endpoint as possible. Then typeset the last
character such that the right-hand-side of the character coincides with
the right endpoint of the beam.

44

We only need to select one character to use for typesetting as the slope of
the beam is constant over its length, and the character used has a “slope”
(angle from horizontal) that is as close as possible to the beam.

This juggling of “best-length” versus “best-slope” is only necessary be-
cause of the need to keep the set of characters to a reasonable size, and also
because the angles required for beams is not as broad as for the requirements
of the more-general vector line-segments.

6.6 Buffering

As TgXtyl reads in bytes from the DVI file for subsequent interpretation, it
copies them into an internal buffer. At a simple level, this buffer is used
to simply copy the DVI bytes used on a DVI page (delimited by bop and
eop bytes). Thus, TEXtyl would act simply as a mechanism that copies its
input to its output, verbatim. At the level that we are interested in, this
buffer will hold all the bytes up to, and including a tyl special string. On
page 38, we made mention of a “note about where the start of the special
occurred” in the DVI file. When we read a special, we mark the position of
the beginning byte of the special, as found in our buffer. If we find that the
special is “tyl”-able, we back up the current place in the buffer to the start
of the special, and proceed with the tyling. TgXtyl will output typesetting
command bytes, and effectively over-write the previous special string in the
buffer, achieving a kind of in-line macro-expansion of the special.

A tricky part of this macro-expansion approach is taking care of defining
new fonts that were used during tyling on a page. As TpXtyl “tyl”s a figure,
it records the used font names (here, only vector or beam fonts) in a list of
“fonts-to-be-defined.” At the end of a page, we formally define these as yet
undefined fonts within the DVI file, and then mark them as having been DVI-
defined to avoid re-definition before the postamble. Even this scheme needs
cleverness since we do not know all the fonts used to typeset any primitive
until the end of the page, but we have to define the font within the DVI file
before the first actual use of the font to typeset those graphic primitives.

The way we get around this “Catch-22"-ish situation is to have an internal
flag (a “font-flag”) inserted into the buffer before the first commands to
typeset a graphic primitive. Since the DVI format allows us to define fonts
between any two DVI commands in a file, we can define them mid-stream.

45

As TgXtyl parses a graphic primitive’s special string, it backs up in the
buffer to the start of the special, outputs the font-flag and then continues to
insert the tyling commands into the buffer until the next special, or the end
of page. At the end of a page, all the tyl-able specials have been expanded,
we have buffer full of DVI commands and font-flags for this page, and a list
of fonts ready for initial definition in the DVI file. We are now ready to write
the buffer to the actual file. As TEXtyl writes each byte of the buffer to the
disk file, it first looks at the byte. If it is “normal” (i.e., 0...255), it converts
the byte to the proper system-dependent format (if necessary) and outputs
it to the disk file. However, if the byte is our font-flag, it treats this flag as
a macro, too, and writes out to the file the formal DVI definitions of the new
fonts. TEXtyl does this expansion only once per page, and ignores any other
font-flags for the rest of the page (well, it actually outputs them as nops).
After these new fonts have been defined, TEXtyl continues to output each
byte of the page buffer, and when done, starts processing on the next DVI
page for tyling.

6.7 Odds 'n Sods

This section contains down-deep information in TgXtyl that really does not
fit nicely anywhere else.

As T discussed before, TpXtyl is built on top of the DVItype program|5]
and was modified in following ways:

e The specialcases and skippages procedures were modified to call
TEXtyl's mainhandlespecials procedure to handle any \special strings,
instead of throwing those bytes out.

e The readpostamble procedure was changed so that we can insert all
the font definitions of the new fonts that we used during any tyling.
TEXtyl simply copies to the internal buffer any font definitons already
in the postamble, until it reaches a postpost. Here TgXtyl backs up
one byte (over the postpost), outputs all its new fonts, and then inserts
the new postpost.

e The main loop was modified so that at each end-of-page, we write out
the internal buffer, clear it, and reset any internal counters for the

46

page (like figure-depth context, figure-number, and counts of fonts-to-
be-defined).

Other Notes

I have implemented an adaptive sub-division method for determining an
optimal number of vector characters with which to typeset a splines. The
method uses a simple quadrature sub-division on each span of the spline
until a linear-distance criterion is met. If we let the number of sub-divisions
be N, we can determine the near-optimum number of intervals with which
to actually sample the spline when we do the interpolation as 2. This is
“optimal” in that we use the fewest vectors for long spans, and do not under-
sample shorter, tighter spans, and achieve a spline that is very smooth.

The names of the primtives within the \special strings need be unique
only to the first three letters. Thus \special{tyl beg} is equivalent to
\special{tyl beginfigure}. This can make input easier and shorter.

Also, we can be pretty lenient about how we delimit our keywords and
makers. In most of the examples, commas or spaces were used to separate the
markers and integers. In actuality, we can use almost anything for keyword
and marker delimiting other than:

e other alphabetic letters
e other marker characters (like @ and ")

e 7, 7, \ and those other reserved characters which might upset TEX, as
it tries to expand macros inside the body of the special string before
outputting it to the DVI file.

For example, \special{tyl line *()(]!::4... 3*x 4&&12[5} is lexically
equivalent to the nicely typed \special{tyl line m 4 (3,4)(12,5)} or
the tersely typed \special{tyl lin m 4 3 4 12 5}.

Another “signature” of TgXtyl is whenever we output the commands to
typset a line-drawing, we preceed the push command with two nops. This
easily identifies the sections that have been “tyl”-ed.

47

48

Figure 6.1: Semi-squares of the Vector Fonts

49

Chapter 7

Future Extensions

Given a little time, one could extend the current set of graphic primitives in
TEXtyl, such as:

e simpler-appearing macros,

regular polygons (all easily built upon currently-existing primitives),

oriented arrows

line-pattern filled figures,
e a more general method of defining and instancing symbol definitions.

I am still experimenting with two methods of adequately computing the
smoothest interpolation of thicknesses along the length of the slur. When
the thickness for a particular segment of the curve have been determined,
we check to see if that thickness is in a subset of vector-font sizes. If so,
we can use it as-is; otherwise, we have to clamp that thickness to fit in the
subset. The only problem is that achieving a super-smooth interpolation
along the curve’s thicknesses might require a large number of vector fonts to
be loaded—sometimes stressing the printing device’s capabilities. I still have
to experiment to find a reasonable subset of these sizes that can be used and
still achieve adequate results.

I wrote this program with the intention of ease of extensibility for addi-
tional “primitives” to be built on top of the functionality provided by TgXtyl.
I have also interfaced TpXtyl with Dario Giuse’s graphic drawing program

20

DP that he wrote at C-MUJ[6]. It is smart enough to represent its graph-
ics primitives in files as a list of text-strings, and is now able to output the
\special strings, specifying the width and height of the created figure. Con-
verting the files of the MacDraw program to yield ASCII strings is potentially
possible, too. In either case, such strings are be easily converted to \special
command strings for TgXtyl to work on.

o1

52

Appendix A

TEXtyl Summary

Let’s summarize the abilities and requirements of TgXtyl. First of all, we
have to put an \input{textyll} near the start of the document (at least
before our first invocation of a \special{tyl ... command). This loads
the macros that we need to create space for our figure, and to set up the
right environment for TpXtyl.

Once the macros have been loaded, when we want to set a figure (or even a
single TEXtyl primitive), we must place the primitives within an environment
started by \begintyl{ (vertsize) } [(horizsize)] and finished by \endtyl.
Here, the required parameter, (vertsize) , determines the vertical size of the
box that TgpXtyl will create for our figure to be placed in. If we do not
need extra space, we put in Opt or some similar zero-length dimension. The
optional parameter, (horizsize) , will add a non-zero width to the box that
\begintyl creates for us. It is crucial that there is no space between the }
and [characters of the \begintyl invocation if we decide to use the optional
horizontal width specification. Otherwise, things may go awry for this figure.
Also, we are responsible for any offsets that we may need before the figure
is placed. We can achieve this through \hskip and \vskip calls in TEX , or
\hspace and \vspace calls in IATEX.

The types of primitives that we may place within the \begintyl and
\endtyl pair are summarized here, without their surrounding \special{tyl
— }, nor any extra delimiting punctuation (like commas).

beginfigure [(meas)| [(zfm)] [W{(wid) (ht)]| [F(wid) (ht)] which opens the environment

endfigure which closes the environment

23

line [(meas)] [(xfm)] (thick) [(vect)] [L (style)] xyp x; ys

spline [(meas)]| [(zfm)] (thick) [(vect)] [L (style)] [{spltype)]
[(closure)] [X (thick)] (numpts) the z-y points

[
ttspline [(meas)] [(zfm)] [(vect)] [L (style)] [(sptype)]
[(closure)] [X (thick)] (numpts) points thicknesses

arc [(meas)]| [(zfm)] (thick) [{vect)] [L (style)] (radius)
[@ (cent,) (cent,)] (startAng) (stopAng)

label [(meas)] (face) xy " (string)"

tieslur [(meas)] (minthick) (mazthick) (numpts) points

beam [(meas)] (staffsize) [(beamtype)] x1 y1 T2 Yo

where:

meas specifies units of length for this primitive. One of S,P, or M indicates
scaled-points, printers-points, and millimeters, respectively. Defaults
to printers-points.

xfm specifies a transformation to be applied. It is of the form
T (sz) (sy) (tz) (ty) (rot), where sz and sy are for scaling, tz and ty
are for translation, and rot is for counter-clockwise rotation (in de-
grees).

thick is the integer thickness of the line. Usually between 1 and 12.

vect is the type of vector font to use. One of C, H, or V indicates circular,
horizontal-flat, or vertical-flat pen type. Defaults to circular pen.

style is the line-style to use. One of 0, 1, 2, or 3 indicates a solid, dotted,
dashed, or dot-dashed line-style. Defaults to solid line.

spltype is the kind of spline to use through the control points. One of B, D,
K, or I indicates the B-spline, Cardinal, Catmull-Rom, or Interpolating
b-spline basis to use, respectively. Defaults to Catmull-Rom.

closure is one of 0 (“oh”) or U which indicates that the spline is closed or
open, respectively. Defaults to open.

numpts is the integer number of control points for this spline.

o4

radius is the length of the radius in units specified by (meas) .
centx and centy are the center-point coordinates of the arc/circle.

start Ang and stopAng are the initial and final angles, respectively, for the
arc as measured in degrees counter-clockwise from the positive x-axis.
If they are the same number, a closed circle is indicated.

face refers to the style of typeface for the label. See page 37 for the list.
string is the string-body of the label to typeset at the specified position.

staffsize refers to the staff note-size for beams. It is between 0 and 8,
inclusive.

beamtype is the type of beam to use. One of G or R indicates grace-note
size, or regular size beams, respectively. Defaults to regular.

wid and ht refer to the width and height of a figure, in units specified by
(meas) . Mainly used in conjuction with F (“Fitting” size operator)
and W (“Written” size marker).

25

96

Appendix B

Font Example

57

Example of cvec3

”OX

"1x

"ox

”3X

" Ax

”5X

”6X

"Tx

%

[1]

00z
01z
02z
03z
04x
05z
06z
07z
‘10z
11z
12z
‘13z
14z
‘15z
‘16z
17z

o8

Appendix C

Macros and Extended
Examples

All of the thumbnail figures in this manual were created using the \special{tyl. ..

strings as described, and were placed within an environment delimited by
\begintyl and \endtyl. This environment allows the user to specify a ver-
tical and optional horizontal offset from the “current-position” on the page.
This determines where the origin of the user’s coordinate system is to be
placed. Also, this environment sets parameters so that the user can use tab-
bing and spacing to align the \special strings as he desires (e.g., to better
show the nesting of figures and graphic-primitives). The macros used are

defined below:
% This is textyl.tex
%

% macros for figures for Tyling

% specify :
% \begintyl{vert_dimen}[optional_horiz_dimen]
% (with NO intervening space between the } and the [chars)

% then the \special{tyl ...} strings

% then you must finish environment with \endtyl

%
\def\begintyl#1{\begingroup\endlinechar=-1\catcode ‘\""I=9
\dimen120=#1
\ifhmode\toksO={\futurelet\tyltempb\begHtyl}
\let\endtyl=\endHtyl
\else\toksO={\futurelet\tyltempb\begVtyl}
\let\endtyl=\endVtyl\fi
\the\toksO}

29

\def\begHtyl{\ifx [\tyltempb \let\tylh=\tylHspace
\else\let\tylh=\tylHnospace\fi\tylh}

A

\def\tylHspace [#1]{\setbox0O=\hbox to #1\bgroup

\vbox to \dimen120\bgroup\vss}
\def\tylHnospace{\setbox0=\hbox\bgroup

\vbox to \dimen120\bgroup\vss}

A

\def\begVtyl{\ifx [\tyltempb \let\tylv=\tylVspace
\else\let\tylv=\tylVnospace\fi\tylv}

%

\def\tylVspace [#1]{\setboxO=\vbox to \dimen120\bgroup\vss
\hbox to #1\bgroup}

\def\tylVnospace{\setbox0=\vbox to \dimen120\bgroup\vss
\hbox\bgroup}

%

\def\endHtyl{\egroup\hss\egroup\box0O\endgroup}
\def\endVtyl{\hss\egroup\egroup\box0O\endgroup}

Let’s look at a non-trivial example of frequently-used figures. The original

figure is from [2], page 325. T'll give the diagram, and then the annotated
\special commands.

60

And the text to produce this is:

\begintyl{9cm}
\special{tyl begin /AHU=fig=9.7/}
\special{tyl arc m 2 6 @ 10 46 10 10 /state=s1/}

\special{tyl label m 5 9 46 "s1"}

\special{tyl arc m 2 6 @ 62 20 10 10 /state=s2/}
\special{tyl lab m 5 61 20 "s2"}

\special{tyl arc m 2 6 @ 62 60 10 10 /state=s3/}
\special{tyl lab m 5 61 60 "s3"}

\special{tyl arc m 2 6 @ 104 34 10 10 /finalstate=s4/}
\special{tyl arc m 2 8 @ 104 34 10 10}

\special{tyl lab m 5 103 34 "s4"}
%now draw the connectors
\special{tyl line m 3 16 48 56 59 /s1-s2/}
\special{tyl lab m 1 30 53 "a"
\special{tyl line m 3 56 59 53 60}), and the arrow
\special{tyl line m 3 56 59 54 57}
\special{tyl line m 3 53 60 54 57}

\special{tyl line m 3 15 43 56 23 /s1-s3/}

\special{tyl labm 1 32 30 "e"}
\special{tyl line m 3 56 23 55 25}
\special{tyl line m 3 56 23 53 23}
\special{tyl line m 3 55 25 53 23}

\special{tyl spline m 3 4 12 52; 62 76; 90,63; 105,44 /s1-s4/}
\special{tyl labm 1 70 78 "b"}

\special{tyl line m 3 105,42 106 44}

\special{tyl line m 3 105 42 104 44}

\special{tyl line m 3 104 44 106 44}

\special{tyl line m 3 62 26 62 54 /s3-s2/}

\special{tyl labm 1 64 38 "b"}
\special{tyl line m 3 62 54 64 52}
\special{tyl line m 3 62 54 60 52}
\special{tyl line m 3 60 52 64 52}

\special{tyl spline m 3 3 67 55; 80 42; 96 36 /s3-s4/}
\special{tyl labm 1 76 40 "e"}

\special{tyl line m 3 96 36 95 38}

\special{tyl line m 3 96 36 95 35}

\special{tyl line m 3 95 35 95 38}

61

\special{tyl spline m 3 3 69 61; 86 52; 98 40 /s4-s3/}
\special{tyl lab m 1 89 51 "a"}

\special{tyl line m 3 69 61 71 62}

\special{tyl line m 3 69 61 70 59}

\special{tyl line m 3 70 59 71 62}

\special{tyl line m 3 69 22 96 32 /s2-s4/}
\special{tyl labm 1 82 24 "e"}
\special{tyl line m 3 96 32, 94 33}
\special{tyl line m 3 96 32 95 30}
\special{tyl line m 3 94 33 95 30}
\special{tyl endfigure}
\endtyl\par

62

Bibliography

1]

2]

[7]

8]
[9]
[10]

Adobe Systems Inc., PostScript Language Reference Manual. Addison-
Wesley, Reading, MA, 1985.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.
1974.

Brian A. Barsky, and Donald P. Greenberg, “Determining a Set of B-
spline Control Vertices to Generate an Interpolating Surface.” Computer
Graphics and Image Processing. 14 3, (Nov. 1980), pp.203-226.

Edwin E. Catmull, and Raphael J. Rom, “A Class of Local Interpolating
Splines.” Computer Aided Geometric Design. Robert E. Barnhill and
Richard F. Riesenfeld, eds. Academic Press, New York, NY, 1974, pp.
317-326.

David R. Fuchs, Howard Trickey, The DVItype processor. Program doc-
umentation, 1983-4.

Dario Giuse, DP—Format of the drawing files. Technical Report. Car-
negie -Mellon University Robotics Institute, 1983.

John S. Gourlay, “A Language for Music Printing.” Communications of
the ACM 29 5, (May 1986), pp. 388—401.

Norm Hutchinson, et al. DVISUN Program. 1983.
Donald E. Knuth, The TEXbook. Addison-Wesley, Reading, Mass. 1984.

Donald E. Knuth, TgX and METAFONT: New Directions in Typeset-
ting. Digital Press, Bedford, MA, 1979.

63

[11]

[12]

[13]

[14]

[15]

[16]

Bruce Nelson, and James Saxe, “Drawing Splines with a Vector Font.”
Unpublished technical report. Carnegie-Mellon University, 1980.

Ted Ross, The Art of Music Engraving and Processing. Hansen Books,
1970.

Daniel Berkeley Updike, Printing Types: Their History, Forms, and
Use. Harvard University Press, Cambridge, MA, 1937.

Sheng-Chuan Wu, John F. Abel, and Donald Greenberg, “An Interactive
Computer Graphics Approach to Surface Representation.” Communica-
tions of the ACM 20 10, (Oct. 1977), pp. 703-712.

Christopher J. Van Wyk, A Language for Typesetting Graphics. Ph.D.
dissertation. Stanford University, 1980.

Hermann Zapf, The Printing Salesman’s Herald. Book 39. Champion
Papers, New York, NY, 1978.

64

Index

"-marker 19, 48

.dvi file 3

.tex text file 1, 3, 34
.tlog file 4, 23

.tyl file 23

71 flag 24

7 flag 23

@-marker 8, 19

A arc 36

arc 19

arcs 7
angles 8, 19
attributes 36
center 8
centering 8, 19
circles 8, 36
closed splines 36
control points 31, 36
ellipses 36
example 8
open 36
open spline 36
phantoming 37
radius 8
representation 31, 36

B B-marker 6, 14, 20
B-spline basis 6, 20
B-splines

interpolating-type 6
recomputing points 30
beam 22
beam 37
beam-types 22
beam font 29
constraints 30
design 29
difference from vector font 29
lengths 30
range of angles 30
relation to staff size 29
sizes 29
types 29
beams 16
attributes 37
default size 22
difference from lines 37
sizes 22
staff size 22
typesetting 45
beginfigure 11, 22
begintyl 1, 3, 4, 12, 57
bitmaps vz
blank space 17
bounding box 34, 38, 41
boxes 1, 3, 9

C C-marker 20

65

capabilities v, vi, 17
Cardinal basis 6, 20
cartesian-space 2
Catmull-Rom basis 20
Catmull-Rom splines 5, 30
circles 7, 8, 36
control points 31, 36
relation to arcs 36
representation 31
circular pen 20
clamping 35, 43, 49
closed splines 14, 20
closure 20
combining primitives 9, 10
coordinates 2
origin 2
coordinate space system 19
current position 1, 2, 3, 17
curves 9

D-marker 6, 20
defaulting values 5
defining fonts 46
delimiters 6, 48
design decisions 21, 27, 30
design goals v
DVI v
DVI-filters 4
DVlI-space 35, 38, 43
DVI file 27
previewing 33
DVI format 46
DVT position coordinates 27
DVISUN 33
DVlItype 27, 47

ellipses 19, 31, 36
relation to circles 36
endfigure 42
endfigure 11, 22
endtyl 1, 12, 57
errors
internal 24
extensions 49

F-marker 22
figure definitions 22
figures 10
context 41
defining 11
example 12
examples 11
fitting to size 22
nested symbols 11
preparation 2
sub-figures 11
tranforms 22
transforms 10, 22
fonts
computing dimensions of 42
defining 46
font flag 46
for labels 38
numbering 43
to be defined 46

G-marker 16, 22
geometric transforms 21
Giuse, Dario 28, 49
grace-notes 16

graphic editors 17, 22
grid-origin 3

(G-

H-marker 20 leaving no space 3

handlers 38 l?aving white space 3
design idea 39 h?S 37, 44
figurehandle 39 l.1ne 35
functionality 38 l'me 18
linehandle 38 l%ne example 1
ttsplinehandle 38 l%ne segments 18, 35

handling specials 27 line style 20, 34

horizontal pen 20 dashed 20

dot-dashed 20

I-marker 6, 20 dotted 20

Ideal v solid 20

input 1 line styles

interpolating B-spline 6 examples 20
basis 20 line thickness 2, 18, 20, 31, 43

item 39, 40 example 20
inserting 41 local maintainer 4, 25
packing 40 Lucas, Bruce 42
traversing 41 M Mmarker 5, 6, 10

jaggies 36 M-measure 19

macro-expansion 33, 46

K-marker 5, 20 macros 1, 9, 57

keywords 6, 48 see begintyl 1

Knuth, Donald 1 markers 6

measurement 19

L-marker 20 default 19

label 37 default 22

label 19 units 2

labels Metafont 28, 42
face 19 limitations 28
font face-styles 38 millimeters 19
font style 19 measurement 5
strings 19 music v, 21

INTRpX 1, 3, 17, 51 music font 29
figure environment 17 MusiCopy v, 15, 42

layline 43

67

N Nelson. Bruce 28 scaling; rotating; translating 9
’ printer’s points 19

nested symbols 11
measurement, 2

O O-marker 14, 20 programmer’s hook 43
open spline 14, 20 programs making figures 22
optional values 5 push 39
origin 2 R
origin of quadrant 17 R-marker 16, 22
OSU 14 reference point 17
output device 4, 49 rotation 9, 10

font memory 36 using degrees measurement 10
oval running TEXtyl 3
see ellipse 19 q
S-measure 19

P P-measure 19 Saxe, James 28
parameters to TpXtyl 17 scaled points 19
Pascal 33 scaling 9
pens 20 slurs 15, 21, 30, 31
phantom control points 37 see also ties 16
phantoming 37 space 1, 3, 51
pixel thickness 20 space macros 1
pop 39 special 38
postamble 47 special 2
PostScript vi specials 2, 17, 27, 46, 57
preamble 1 case insensitivity 6
preparing a figure 2 handling 33
primitive 2 handling by TpXtyl 27
primitives 17, 34 punctuation 6

attributes 34 typing in 6
built-up 17 spline 35
combining 9, 10 spline 18
definition of 40 spline

invoking 9 B-spline 6
modifying attributes 34 Cardinal 6
names 48 Catmull-Rom 5
parameters 9, 18 control-points 5
reduction of 34 coordinates 5

68

default 5
example 5
Interpolating B-spline 6
ttspline 6
spline curves 5
splines
attributes 35
B-spline 35
example 15
basis 20, 35
Cardinal 35
example 14
Catmull-Rom 35
example 14
clamping 35
closed 14
closure 20
default basis 20
default closure 20
default type 30
families 30
Interpolating B-spline
example 15
interpolation 30
inversion 30
open 14
types 20
typesetting 47
use in simulating 37
staff-size 16
staff lines 37
staff sizes 29, 37
Standard, Paul ¢
sub-figures 11
subdivision of splines 47
surprise errors 24
symbol

see figure 22

T T-marker 10, 12

TEX v, 1, 3, 17, 34, 51

TEXbook 9

TEX commands 17, 51

TEXtyl v
.tlog log-file 23
error handling 23
error messages 24
error recovering 23
how to read manual v
name v
parameters 17
serious problems 26
signatures 43, 48
simple problem 25

textyl.tex file 1

TFM information 27

Thick-n-thin spline 6

ties 15, 21, 30
and ttsplines 16
example 16
see also slurs 16

tieslur 21

tieslur 35

tieslur
attributes 35
clamping 35
example 16
implementation 31
pen type 21
relation to ttsplines 35
representation 34
thicknesses 16, 21
vector type 21

tranforms

figure-level 22
transform 21
transformations

see transforms 21
transforms 9

additiveness 22, 42

concatenation 11

example 10

figure-level 41

mirroring 10

no-op 10

parameters 10, 21

format 21
requirement 21

rotating 9

scaling 9

sub-figures 11

top-level 42

translation 9
transform to DVI space 39
translating 9
ttspline 35
ttspline 6, 31

clamping 35

defaults 6

example 6

line thicknesses 31

thicknesses 6, 18
ttspline 18
tyling v, 33, 37, 46
tyl name-string 2
typing in special strings 6

U-marker 14, 20
units of measure 19
Unix 33

user’s view 17

user intuition 21

V V-marker 20
vector-types 20
default 20
vector font 20, 28

computing dimensions 28

cvec 29
dimensions 28
mapping function 44
path invariance 45
pen-types 29
pens
example 29
pixelsize 29
range of angles 28
sizes 29
types 29
vectors
typesetting with 28
vertical pen 20

W W-marker 22

X X-marker 18

Z Zapf, Hermann i

70

